If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2)x^2+3=125
We move all terms to the left:
(2)x^2+3-(125)=0
We add all the numbers together, and all the variables
2x^2-122=0
a = 2; b = 0; c = -122;
Δ = b2-4ac
Δ = 02-4·2·(-122)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{61}}{2*2}=\frac{0-4\sqrt{61}}{4} =-\frac{4\sqrt{61}}{4} =-\sqrt{61} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{61}}{2*2}=\frac{0+4\sqrt{61}}{4} =\frac{4\sqrt{61}}{4} =\sqrt{61} $
| 3(u–19)+6=9 | | 2(1x+3)=5 | | 10x*20x=5000 | | 2x-5/3x-5=3/5 | | X=p-2p | | 4/11=6/x | | 35=-2x-7x+8 | | x+(x+278)=2678 | | 33b+5=20−b | | 9=-3(r+-4) | | -3+5=k-1 | | b+5=20−b | | 1/8-5/7(x-5/29)=6x/25+1/13 | | 33.3b+5=20−b | | 2(5x+3)=4 | | -3k+5=k-1 | | 9(4x+1)=6 | | 35=2x-7x+8 | | 25-10x=25-9x | | 16–m=9 | | (2x-3)^2=144 | | 35=2x-7x=8 | | 4(15+x)=132 | | 2x^2=3=165 | | 102=5x+x | | 3x+15+10x=4+2x | | 7(x-9)=8(x-6) | | 3l-5=5l-7 | | 3x^2+18x+27=0 | | 10x-25=9x-25 | | 3(1x+1)=6 | | x+2x+4•2x=176 |